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Abstract 
The objective of this paper is the description of the 

development and the validation, using airborne hyper-spectral 
imagery data, of a non-conventional technique for the vegetation 
information extraction. The proposed approach namely the 
universal pattern decomposition method (UPDM) is tailored for 
hyper-spectral imagery analysis, which can be explained using two 
analysis methods: spectral mixing analysis and multivariate 
analysis. For the former, the UPDM expresses the spectrum of 
each pixel as the linear sum of three fixed, standard spectral 
patterns (i.e., the patterns of water, vegetation, and soil); each 
coefficient represents the ratio of spectral patterns of three 
components. If we think of the UPDM as multivariate analysis, 
standard patterns are interpreted as an oblique coordinate system, 
and coefficients are thought of as the coordinates of a pixel’s 
reflectance. The later explanation is much more comprehensible 
than the former for the reason of additional supplementary pattern 
presence when necessary. This paper validates the UPDM using 
AVIRIS airborne imagery, and the results provide an expected 
assumption. 

Introduction  
Vegetation indices (VIs) derived from the satellite remotely 

sensed imagery are one of the primary sources of information for 
operational monitoring of the Earth’s vegetative cover. VIs have 
the property of being sensitive to a variety of biophysical vegetation 
canopy parameters, such as leaf area index, fraction vegetation 
cover, leaf angle distribution and leaf chlorophyll concentration [1]. 
Most of them are called broadband VIs because they are based on 
algebraic combinations of reflectance in the red, R, and that in the 
near infrared, NIR, spectral bands [2]. The broadband indices use 
average spectral information over broad bandwidths, resulting in 
loss of critical information available in specific narrow bands [3]. In 
addition, the broadband indices are known to be heavily affected by 
soil background at low vegetation cover [4]. Hyperspectral sensors 
measure reflectance in a large number of narrow wavebands, 
generally with bandwidths of less than 10 nm. With these narrow 
bands, reflectance and absorption features related to specific crop 
physical and chemical characteristics can be detected (Strachan, et 
al., 2002). With many airborne imaging spectrometer systems in 
use today and the rise of spaceborne hyperspectral sensors, better 
understanding of this type of image data is increasingly needed [6]. 
VIs derived from the R and NIR bands is unsuitable for 
hyperspectral data (i.e. AVIRIS) analysis. 

The universal pattern decomposition method (UPDM) is a 
sensor-independent method that is tailored for satellite data 
analysis [7] [8]. The UPDM can be explained using two analysis 
methods: spectral mixing analysis and multivariate analysis. For 

the former, the UPDM expresses the spectrum of each pixel as the 
linear sum of three fixed, standard spectral patterns (i.e., the 
patterns of water, vegetation, and soil); each coefficient represents 
the ratio of spectral patterns of three components. If we think of 
the UPDM as multivariate analysis, standard patterns are 
interpreted as an oblique coordinate system, and coefficients are 
thought of as the coordinates of a pixel’s reflectance. The later 
explanation is much more comprehensible than the former for the 
reason of additional supplementary pattern presence when 
necessary. This method has been successfully applied to simulated 
data with wavelengths observed by Landsat/ETM+, Terra/MODIS, 
ADEOS-II/GLI and 92 bands-CONTINUE sensors[7], and 
validated using MODIS and ETM+ satellite data from over the 
Three Gorges region in China[9]. This paper validates the UPDM 
using AVIRIS airborne imagery, and the results provide an 
expected assumption. 

Methodology  

The Universal Pattern Decomposition Method 
The UPDM decomposes reflectance values at each pixel into 

a linear sum of standard spectral patterns for water, vegetation, soil 
and any supplemental patterns using the following formula [9] 
[10]:  

44 iissivviwwi PCPCPCPCR ⋅+⋅+⋅+⋅→ M                     (1) 

where Ri is the reflectance of band i measured on the ground (or by 
satellite sensor), Cw, Cv and Cs are the respective decomposition 
coefficients, C4 represents supplemental coefficients, and Piw, Piv, 
and Pis are the standard spectral patterns of water, vegetation and 
soil for some typical sensor, which is intercepted from the same 
standard pattern normalized in the same wave region of 350nm to 
2500nm for any sensor, which is thus respect to the properties of 
each sensor. Pi4 is the supplementary standard pattern for i bands 
and is an optional component that is also controlled by the purpose 
of the study. For example, for MODIS and ETM+, Piw, Piv, Pis, 
and Pi4 are different as the description in the following section, but 
they are all intercepted from the same normalized standard spectral 
pattern, namely, sensor-independent standard spectral pattern. In 
this case, a yellow-leaf spectrum is used, but the supplemental 
pattern is not fixed. Rather, it depends on the study purpose. 

Equation (1) can be expressed using matrix notation as 
follows: 

rPCR +=                                                                          (2) 
or 
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where R = [R1, R2, …, Rn]
T is the column vector of observations, n 

is the number of spectral bands; P = [Pw, Pv, Ps, P4] is the n × 4 
matrix of which the row vector is the standard spectral pattern for 
band number n, C = [Cw, Cv, Cs, C4]

T is the column vector of UPDM 
coefficients and r is the residual column vector for band i. Inverting 
(2) and minimizing the sum-of-squared-error criterion function  
yields the unique solution of C is 

RPPPC T1)( −Τ=                                                             (4) 

where R is a vector known from satellite data, and P is a standard 
spectral pattern matrix as described above. The spectral pattern 
matrix is derived from normalized standard spectral patterns of 
water, vegetation, soil, and supplementary data, which in this case 
is yellow leaf [9]. 

Vegetation Index Computation 
We have developed a new vegetation index that was based on 

a universal pattern decomposition method (VIUPD) [11]. The new 
vegetation index was normalized by total reflectance or total 
brightness to minimize shadow effects and obtain stable values. 
The index is a function of the linear combination of the pattern 
decomposition coefficients. The formula is given as follows: 

svw

4sv )(
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VIUPD

++
−×−=                                         (5) 

where ( sw CCC ++ v ) represents the sum of total reflectance, even 

an supplementary pattern is included, since the integrated value of 

λλ d)(4∫ r equal zero [11], and a is the coefficient of standard soil 

pattern coefficients. The Cs term in the numerator is a correction 
term for dead vegetation, because the spectral pattern for dead 
vegetation contains a small portion of the vegetation pattern. We 
determined parameter a so that the average VIUPD value for dead 
vegetation equals zero. For standard vegetation, the VIUPD value 
equals 1. In this case, the value of a is 0.10. 
 

 
Figure 1. Flowchart of vegetation index computation 

Figure 1 schematically shows the step of vegetation index 
computation. Remotely sensed digital number (DN) was firstly 
converted to radiance value, and then by using formula (4) and (5), 
vegetation index imagery was obtained. 

In this study, we used the same water, vegetation, and soil 
standard spectral patterns. Figure 2 shows the normalized standard 
patterns of soil, water, vegetation, and the supplementary pattern. 
In the UPDM, however, we converted an uninterrupted spectral 

wavelength range from 350 to 2,500 nm, excluding regions of 
strong atmospheric absorption. Therefore, the total number of 
bands equaled 1,260. When the UPDM approach applies on 
AVIRIS data, we intercept the normalized standard patterns values 
correspond to AVIRIS sensor band center position, the matrix P 
then are obtained. Since some of AVIRIS band have zero signal 
values, the finally band number for AVIRIS is 123, thus P = [Pw, Pv, 
Ps, P4] is the 123 × 4 matrix vector. 
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Figure 2.  Normalized standard patterns of soil, water, vegetation, and the 
supplementary pattern. This figure shows the normalized values of the 
standard spectral patterns of water, vegetation, and soil used for vegetation 
index computation; the supplementary standard pattern represents a yellow 
leaf. 

Data Used in This Test 
AVIRIS is an acronym for the Airborne Visible InfraRed 

Imaging Spectrometer. The AVIRIS instrument contains 224 
different detectors, each with a wavelength sensitive range (also 
known as spectral bandwidth) of approximately 10 nanometers, 
allowing it to cover the entire range between 380 nm and 2500 nm 
[12].The AVIRIS Standard Data Products was downloaded from 
Jet Propulsion Laboratory website [12]. This data was acquired 
over the Moffett Field, with vegetation, urban and water included. 
The measurements data (DN) was converted to ground reflectance 
data with proper calibration and correction for atmospheric effects. 
Figure 3 shows the selected region of AVIRIS reflectance imagery. 

 

 
Figure 3. Original AVIRIS reflectance imagery 
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Results and conclusions 
In this study, three vegetation indices (VIUPD, NDVI, and 

EVI) imagery were computed from AVIRIS imagery. VIUPD 
images from AVIRIS shows more detailed information than NDVI 
and EVI images. Figure 4 shows the VIUPD vegetation index 
imagery. 

 
 

 
Figure 4. Vegetation index VIUPD imagery derived from AVIRIS data   

The vegetation index, based on the universal pattern 
decomposition index (VIUPD), reflects the linear sum of the four 
pattern decomposition coefficients. The VIUPD reflected 
vegetation concentrations, the amount of CO2 absorption, and the 
degree of terrestrial vegetation vigor more sensitively than did the 
NDVI and EVI, and was especially sensitive to CO2 absorption 
[11]. Two or three reflectance bands are used to calculate EVI and 
NDVI, while the VIUPD use multi-spectral satellite- and ground-
measured reflectance data. The VIUPD is computed using four 
UPDM coefficients, that is, the VIUPD is a linear function of Cw, 
Cv, Cs, C4, and is normalized with the total reflectance value [11]. 
The traditional broadband vegetation indices usually constructed 
with near-infrared (NIR) and red (R) bands [3], while the VIUPD 
is computed with the all observed wavelengths. Thus the VIUPD is 
more suitable for multi-spectral analysis than the EVI and NDVI 
[11]. The objective of this paper is the description of the 
development and the validation, using airborne hyper-spectral 
imagery data, of a non-conventional technique for the vegetation 
information extraction. This paper validates the UPDM using 
AVIRIS airborne imagery, and the results provide an expected 
assumption. 
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